# **Kapitel VII**

Auf diesen Seiten können Sie alle grundlegenden Inhalte des Kapitels wiederholen.

|    | Checkliste                                                                            | © | <u></u> | 8 | Wiederholung                                   |
|----|---------------------------------------------------------------------------------------|---|---------|---|------------------------------------------------|
| 1. | Ich kann den Abstand eines Punktes von einer Ebene berechnen.                         |   |         |   | Beispiel 1 und 2, Seite 221                    |
| 2. | Ich kann den Abstand eines Punktes von einer Geraden berechnen.                       |   |         |   | Beispiel, Seite 224                            |
| 3. | Ich kann den Abstand zueinander windschiefer Geraden berechnen.                       |   |         |   | Beispiel, Seite 227                            |
| 4. | Ich kann Winkelgrößen zwischen Vektoren sowie die Größe von Schnittwinkeln berechnen. |   |         |   | Merkkasten, Seite 230<br>Merkkasten, Seite 234 |
| 5. | Ich kann Punkte an Punkten, Geraden und Ebenen im Raum spiegeln.                      |   |         |   | Beispiel 1, Seite 241                          |
| 6. | Ich kann Bewegungen mithilfe von Vektoren modellieren.                                |   |         |   | Beispiel, Seite 243                            |
| 7. | Ich kann Beweise mithilfe von Vektoren führen.                                        |   |         |   | Beispiele 1 und 2, Seite 247                   |

Kontrollieren Sie Ihre Ergebnisse selbst. Die Lösungen finden Sie auf den nächsten Seiten.

# 1 Abstand eines Punktes von einer Ebene berechnen

Gegeben sind die Ebene E:  $2x_1 + 2x_2 - x_3 = 8$  und der Punkt R(7|7|-11,5).

- a) Berechnen Sie den Abstand von R zu E mit der Hesse'schen Normalenform.
- b) Berechnen Sie die Koordinaten des Lotfußpunktes von R auf E.

# 2 Abstand eines Punktes von einer Geraden berechnen

Berechnen Sie den Abstand des Punktes R(21315)

- a) von den Koordinatenachsen,
- b) von der Geraden g:  $\vec{x} = \begin{pmatrix} 27 \\ 17 \\ 19 \end{pmatrix} + s \cdot \begin{pmatrix} 6 \\ 2 \\ -1 \end{pmatrix}$ .

#### 3 Abstand zueinander windschiefer Geraden berechnen

Die Geraden g:  $\vec{x} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} + s \cdot \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$  und h:  $\vec{x} = \begin{pmatrix} 5 \\ 10 \\ -3 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$  sind zueinander windschief. Berechnen Sie ihren Abstand.

#### 4 Winkelgrößen zwischen Vektoren und die Größe von Schnittwinkeln berechnen

Gegeben sind die Punkte P(1|2|1), Q(3|2|-5) und R(-6|7|3). Die Gerade g enthält P und Q, die Gerade h enthält P und R.

- a) Berechnen Sie die Größe des Winkels zwischen den Vektoren  $\overrightarrow{PQ}$  und  $\overrightarrow{PR}$ .
- b) Berechnen Sie die Größe des Schnittwinkels der Geraden g und h.
- c) Berechnen Sie die Größe des Schnittwinkels der Geraden g mit der Ebene E:  $x_1 + 4x_2 8x_3 = 7$ .
- d) Unter welchem Winkel schneiden sich die Ebene E aus Teilaufgabe c) und die x<sub>1</sub>x<sub>2</sub>-Ebene?

# 5 An Punkten, Geraden und Ebenen spiegeln

Gegeben sind die Punkte P(1|2|3) und Q(4|0|20) sowie die Ebene E:  $3x_1 + 2x_2 + 7x_3 = 152$ .

- a) Der Punkt P wird am Punkt Q gespiegelt. Welche Koordinaten hat der Bildpunkt P'?
- b) Der Punkt P wird an der x<sub>1</sub>-Achse gespiegelt. Welche Koordinaten hat der Bildpunkt P'?
- c) Der Punkt P wird an der Ebene E gespiegelt. Berechnen Sie die Koordinaten des Bildpunktes P'.
- d) Die Gerade durch die Punkte P und Q wird an E gespiegelt. Geben Sie eine Gleichung für die Bildgerade g' an.

#### 6 Bewegungen mithilfe von Vektoren modellieren

Ein Boot befindet sich zum Zeitpunkt t = 0 im Punkt P(3|2). Nach 15 Minuten befindet es sich im Punkt Q(6,75|4). Es bewegt sich gleichmäßig auf einer Geraden durch diese beiden Punkte. 1LE entspricht 1km.

- a) Geben Sie die Zeit-Ort-Gleichung des Bootes und seine Position nach einer Stunde an.
- b) Mit welcher Geschwindigkeit bewegt sich das Boot?

#### 7 Beweise mithilfe von Vektoren führen

Beweisen Sie: In einem gleichschenkligen Dreieck mit den Schenkeln  $\overline{AC}$  und  $\overline{BC}$  ist die Seitenhalbierende s<sub>c</sub> identisch mit der Höhe h<sub>c</sub>. (Achtung: Das Dreieck in Fig. 1 ist nicht gleichschenklig.)

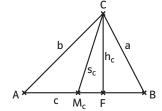


Fig. 1

VII Abstände und Winkel Check-out

# **Kapitel VII**

- **1** a) d(R; E) = 10.5 LE
- b) Lotfußpunkt: F(0|0|-8)
- **2** a) Abstand von der  $x_1$ -Achse:  $\sqrt{3^2 + 5^2} = \sqrt{34}$

Abstand von der  $x_2$ -Achse:  $\sqrt{2^2 + 5^2} = \sqrt{29}$ 

Abstand von der  $x_3$ -Achse:  $\sqrt{2^2 + 3^2} = \sqrt{13}$ 

b) Fußpunkt des Lotes von R auf g: F(3|9|23)

Abstand: d(R; g) = 19 LE

- 3 d(g; h) = 12 LE
- **4** a)  $\approx 117.7^{\circ}$
- b) ≈ 62,3°
- c) ≈ 61,5°
- d) ≈ 27,3°
- **5** a) P'(7|-2|37)
- b) P'(1|-2|-3)
- c) P'(13|10|31)

d) 
$$g: \vec{x} = \begin{pmatrix} 4 \\ 0 \\ 20 \end{pmatrix} + s \cdot \begin{pmatrix} 9 \\ 10 \\ 11 \end{pmatrix}$$

**6** a)  $\overrightarrow{PQ} = \begin{pmatrix} 3,75 \\ 2 \end{pmatrix}$ . g:  $\overrightarrow{x} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} + t \cdot 4 \cdot \overrightarrow{PQ} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} + t \cdot \begin{pmatrix} 15 \\ 8 \end{pmatrix}$ 

 $\vec{r} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} + 1 \cdot \begin{pmatrix} 15 \\ 8 \end{pmatrix} = \begin{pmatrix} 18 \\ 10 \end{pmatrix}$ . Nach einer Stunde befindet sich das Boot im Punkt R (18 | 10).

- b)  $\left| {15 \choose 8} \right| = \sqrt{15^2 + 8^2} = 17$ . Das Boot bewegt sich mit einer Geschwindigkeit von  $17 \frac{km}{h}$ .
- 7 Man wählt  $\overrightarrow{AB} = \overrightarrow{a}$  und  $\overrightarrow{AC} = \overrightarrow{b}$ . Dann ist  $\overrightarrow{BC} = \overrightarrow{b} \overrightarrow{a}$  und  $\overrightarrow{M_cC} = -\frac{1}{2}\overrightarrow{a} + \overrightarrow{b}$ .
- 1. Voraussetzung:

"Das Dreieck ist gleichschenklig." bedeutet in Vektorschreibweise

2. Behauptung:

"Die Seitenhalbierende  $s_c$  ist identisch mit der Höhe  $h_{c}$ ." bedeutet in Vektorschreibweise

$$\overrightarrow{AB} \perp \overrightarrow{M_cC}$$
 bzw.  $\overrightarrow{a} \cdot \left(-\frac{1}{2}a + \overrightarrow{b}\right) = 0$ .

3. Beweis:

$$\overrightarrow{a} \cdot \left( -\frac{1}{2}a + \overrightarrow{b} \right) = -\frac{1}{2}\overrightarrow{a}^2 + \overrightarrow{a} \cdot \overrightarrow{b} = -\frac{1}{2} \cdot 2\overrightarrow{b} \cdot \overrightarrow{a} + \overrightarrow{a} \cdot \overrightarrow{b} = -\overrightarrow{b} \cdot \overrightarrow{a} + \overrightarrow{a} \cdot \overrightarrow{b} = 0$$

