Kapitel V

Auf diesen Seiten können Sie alle grundlegenden Inhalte des Kapitels wiederholen.

	Checkliste	©	<u></u>	8	Wiederholung
1.	Ich kann aus der Stufenform eines LGS die Lösung ermitteln.				Lehrtext, Seite 158
2.	Ich kann mit dem Gauß-Verfahren ein LGS lösen.				Beispiel 1, Seite 159
3.	Ich kann die Lösungsmenge eines LGS bestimmen.				Lehrtext, Seite 162 Beispiel, Seite 163
4.	Ich kann den Funktionsterm einer ganzrationalen Funktion aus Eigenschaften des Graphen der Funktion bestimmen.				Beispiel 1, Seite 166 Beispiel 3, Seite 167

Kontrollieren Sie Ihre Ergebnisse selbst. Die Lösungen finden Sie auf den nächsten Seiten.

1 Lösung eines LGS aus Stufenform bestimmen

Bestimmen Sie die Lösung des LGS.

$$2x_1 + 3x_2 + x_3 = 3$$

 $x_2 + 2x_3 = 7$
 $-x_3 = -4$

2 LGS mit dem Gauß-Verfahren lösen

Bestimmen Sie die Lösung des LGS.

$$x_1 - 3x_2 + 2x_3 = 0$$

 $2x_1 + 4x_2 - 5x_3 = 1$
 $-3x_1 + 2x_2 + 4x_3 = 3$

3 Lösungsmenge eines LGS bestimmen

Bestimmen Sie die Lösungsmenge des LGS.

a)
$$2x_1 + 3x_2 + x_3 = 1$$

 $2x_1 + 4x_3 = -3$
 $-2x_1 - 6x_2 + 2x_3 = -4$

b)
$$x_1 + 5x_2 - 3x_3 = 1$$

 $6x_1 - 5x_2 - 4x_3 = 6$

c)
$$\begin{pmatrix} 1 & 1 & -1 & 5 \\ -2 & -2 & 2 & -10 \\ 3 & 3 & -3 & 15 \end{pmatrix}$$

4 Funktionsterm bestimmen

Bestimmen Sie eine ganzrationale Funktion f möglichst kleinen Grades, deren Graph im Ursprung einen Tiefpunkt und in (1|1) einen Wendepunkt hat.

V Lineare Gleichungssysteme

Kapitel V

1 $x_3 = 4$, $x_2 = -1$ und $x_1 = 1$ Die Lösung ist (1; −1; 4).

$$\begin{array}{ll} I & x_1-3\,x_2+\ 2\,x_3=0 \\ II\,a & 10\,x_2-\ 9\,x_3=1 \\ III\,a & -7\,x_2+10\,x_3=3 \ III\,b=7\cdot II\,a+10\cdot III\,a \end{array}$$

$$\begin{array}{lll} I & x_1 - \ 3 \, x_2 + \ 2 \, x_3 = \ 0 \\ II \, a & 10 \, x_2 - \ 9 \, x_3 = \ 1 \\ III \, b & 37 \, x_3 = 37 \\ \end{array}$$

$$x_3 = 1$$
, $x_2 = 1$ und $x_1 = 1$
Die Lösung ist (1; 1; 1).

3 a) I
$$2x_1 + 3x_2 + x_3 = 1$$

II $2x_1 + 4x_3 = -3$
III $-2x_1 - 6x_2 + 2x_3 = -4$ III $a = III + 2 \cdot I$

b)
$$1 x_1 + 5x_2 - 3x_3 = 1$$

 $11 6x_1 - 5x_2 - 4x_3 = 6 11a = 1 + 11$

I
$$x_1 + 5x_2 - 3x_3 = 1$$

IIa $7x_1 - 7x_3 = 7$

Man wählt z.B. $x_3 = t$, $x_1 = 1 + t$ und $x_2 = 0.4t$.

Lösungsmenge: $L = \{(1 + t; 0,4t; t) | t \in \mathbb{R}\}$

Man wählt z.B. $x_3 = t$, $x_2 = s$ und $x_1 = 5 - s + t$. Lösungsmenge: $L = \{(5 - s + t; s; t) | s, t \in \mathbb{R}\}$

-(

4 1. Aufstellen des allgemeinen Funktionsterms und Angeben der Ableitungen der Funktion:

Es liegen vier Bedingungen vor. Daher ist die Funktion f vom Grad drei.

$$f(x) = ax^3 + bx^2 + cx + d$$

$$f'(x) = 3ax^2 + 2bx + c$$

$$f''(x) = 6ax + 2b$$

$$f'''(x) = 6a$$

2. Formulieren der gegebenen Bedingungen mit f, f', f" usw.:

$$f(0) = 0$$
; $f'(0) = 0$; $f(1) = 1$; $f''(1) = 0$

a+ b

3. Aufstellen des linearen Gleichungssystems:

$$f(0) = 0$$
:

$$d = 0$$

$$f'(0) = 0$$
:

$$f(1) = 1$$
:

$$f''(1) = 0$$
: $6a + 2b$

4. Lösen des linearen Gleichungssystems:

$$a = -0.5$$
; $b = 1.5$

$$f(x) = -0.5x^3 + 1.5x^2$$

5. Überprüfen, ob alle angegebenen Bedingungen erfüllt sind:

Es ist f''(0) = 3 > 0. Also liegt im Ursprung ein Tiefpunkt des Graphen von f vor.

Wegen $f'''(1) = -3 \pm 0$ ist (1|1) ein Wendepunkt des Graphen von f.

Ergebnis: Die Funktion f mit $f(x) = -0.5x^3 + 1.5x^2$ erfüllt die genannten Bedingungen.