Kapitel I

Auf diesen Seiten können Sie alle grundlegenden Inhalte des Kapitels wiederholen.

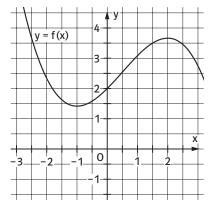
	Checkliste	©	(2)	8	Wiederholung
1.	Ich kann die Ableitung einer Funktion an einer Stelle näherungs- weise grafisch bestimmen und damit den Graphen der Ablei- tungsfunktion dieser Funktion skizzieren.				Beispiel 1, Seite 9
2.	Ich kann mithilfe der Potenz-, der Faktor- und der Summen- regel die Ableitung und höhere Ableitungen einer Funktion berechnen.				Beispiel 1, Seite 11 Beispiel 2, Seite 12
3.	Ich kann die Verkettung zweier Funktionen bilden und eine geeignete Funktion als Verkettung zweier Funktionen darstel- len.				Beispiel 1, Seite 15
4.	Ich kann geeignete Funktionen mithilfe der Kettenregel ableiten.				Beispiel, Seite 18,
5.	Ich kann geeignete Funktionen mithilfe der Produktregel und gegebenenfalls weiterer Regeln ableiten.				Beispiel 1, Seite 20 Beispiel 2, Seite 21
6.	Ich kann das Monotonieverhalten von Funktionen untersuchen.				Beispiel 1, Seite 24
7.	Ich kann das Krümmungsverhalten von Funktionsgraphen untersuchen.				Beispiel 2, Seite 24
8.	Ich kann Extrem- und Wendepunkte von Funktionsgraphen bestimmen.				Beispiel, Seite 27
9.	Ich kann Extremwertprobleme mit Nebenbedingungen lösen.				Beispiele 1 und 2, Seite 30

Kontrollieren Sie Ihre Ergebnisse selbst. Die Lösungen finden Sie auf der letzten Seite.

1 Grafisch ableiten

Die Abbildung zeigt den Graphen einer Funktion f.

- a) Bestimmen Sie näherungsweise f'(0).
- b) Skizzieren Sie den Graphen der Ableitungsfunktion f'.



2 Mithilfe der Potenz-, Faktor- und Summenregel ableiten

Bestimmen Sie f'(x) und f''(x).

a)
$$f(x) = -3x^3 + 0.5x^2 - 6x + 1$$
 b) $f(x) = \frac{3}{x} - 2\sqrt{x}$

b)
$$f(x) = \frac{3}{x} - 2\sqrt{x}$$

c)
$$f(x) = \frac{x^4 - 2x^2 + 4}{x^2}$$

3 Funktionen verketten

- a) Bilden Sie u°v und v°u für u(x) = $\sqrt{x^2 + 1}$ und v(x) = $\frac{1}{x}$. b) Stellen Sie die Funktion f mit f(x) = $\frac{1}{(2x-1)^2}$ als Verkettung zweier Funktionen u und v dar.

4 Mithilfe der Kettenregel ableiten

Bestimmen Sie f'(x) und vereinfachen Sie das Ergebnis.

a)
$$f(x) = (2x^2 - 4)^4$$

b)
$$f(x) = 2\sqrt{1 + x^2}$$

5 Mithilfe der Produktregel ableiten

Bestimmen Sie f'(x).

a)
$$f(x) = (1 - x) \sin(x)$$

b)
$$f(x) = (x + 1)(2x - 1)^3$$

c)
$$f(x) = (2x - 1)\cos(2x)$$

6 Monotonieverhalten untersuchen

Bestimmen Sie für die Funktion f mit $f(x) = \frac{1}{4}x^4 - 2x^2 + 3$ alle Intervalle, auf denen f streng monoton wachsend ist.

7 Krümmungsverhalten untersuchen

Bestimmen Sie die Intervalle, auf denen der Graph der Funktion f mit $f(x) = \frac{1}{2}x^4 - 6x^2 + 2x - 1$ linksgekrümmt ist.

Extrem- und Wendepunkte bestimmen

Bestimmen Sie die Extrem- und Wendestellen der Funktion f mit $f(x) = \frac{1}{12}x^4 - \frac{1}{3}x^3 + 1$. Geben Sie die Extremund Wendepunkte des Graphen von f an.

9 Extremwertprobleme lösen

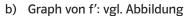
Ein rechteckiges Gelände soll einen Flächeninhalt von 1000 m² haben. An einer Seite soll es durch eine Mauer, an den drei anderen Seiten durch einen Zaun begrenzt werden.

Die Herstellung von einem Meter Mauer kostet 200€, ein Meter Zaun kostet 50€.

Bestimmen Sie die Seitenlängen des Geländes so, dass die Begrenzung möglichst billig wird.

Kapitel I

1 a) f'(0) ist gleich der Steigung der Tangente im Punkt P(0|2). Aus der Zeichnung liest man ab: $f'(0) \approx 1$.



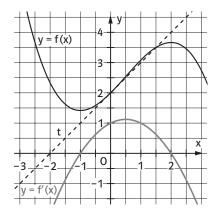
2 a)
$$f'(x) = -9x^2 + x - 6$$
; $f''(x) = -18x + 1$

b)
$$f'(x) = -\frac{3}{x^2} - \frac{1}{\sqrt{x}}$$
; $f''(x) = \frac{6}{x^3} + \frac{1}{2x\sqrt{x}}$

c)
$$f(x) = x^2 - 2 + \frac{4}{x^2}$$
; $f'(x) = 2x - \frac{8}{x^3}$; $f''(x) = 2 + \frac{24}{x^4}$

3 a)
$$(u \circ v)(x) = u(v(x)) = \sqrt{\left(\frac{1}{x}\right)^2 + 1}$$
; $(v \circ u)(x) = v(u(x)) = \frac{1}{\sqrt{x^2 + 1}}$

b)
$$f(x) = u(v(x))$$
 mit $u(x) = \frac{1}{x}$ und $v(x) = (2x - 1)^2$ oder $u(x) = \frac{1}{x^2}$ und $v(x) = 2x - 1$



4 a)
$$f'(x) = 4(2x^2 - 4)^3 \cdot 4x = 16x(2x^2 - 4)^3$$

b)
$$f'(x) = 2 \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{1+x^2}} \cdot 2x = \frac{2x}{\sqrt{1+x^2}}$$

5 a)
$$f'(x) = -\sin(x) + (1 - x)\cos(x)$$

b)
$$f'(x) = (2x-1)^3 + (x+1) \cdot 3(2x-1)^2 \cdot 2 = (2x-1)^2(2x-1+6x+6) = (2x-1)^2(8x+5)$$

c)
$$f'(x) = 2\cos(2x) - (2x - 1)\sin(2x) \cdot 2 = 2\cos(2x) - 2(2x - 1)\sin(2x)$$

6
$$f'(x) = x^3 - 4x = x(x^2 - 4)$$

Nullstellen von f': -2, 0 und 2.

Es ist f'(x) > 0 für $x \in (-2, 0)$ und für $x \in (2, \infty)$.

7
$$f'(x) = 2x^3 - 12x + 2$$
; $f''(x) = 6x^2 - 12 = 6(x^2 - 2)$

Es ist f''(x) > 0 für $x \in (-\infty; -\sqrt{2})$ und für $x \in (\sqrt{2}; \infty)$.

8
$$f'(x) = \frac{1}{3}x^3 - x^2 = \frac{1}{3}x^2(x-3)$$
; $f''(x) = x^2 - 2x = x(x-2)$; $f'''(x) = 2x - 2$

f'(x) = 0 liefert $x_1 = 0$ und $x_2 = 3$. Es ist f''(3) = 3 > 0, d.h., x_2 ist eine Minimumstelle.

Wegen f''(0) = 0 hat f' hat an der Stelle $x_1 = 0$ keinen Vorzeichenwechsel, d.h., x_1 ist keine Extremstelle.

f''(x) = 0 liefert $x_1 = 0$ und $x_3 = 2$. Es ist $f'''(0) = -2 \neq 0$ und $f'''(2) = 2 \neq 0$, d.h., x_1 und x_3 sind Wendestellen.

Der Graph von f hat den Tiefpunkt $T(3 | -\frac{5}{4})$ sowie die Wendepunkte $W_1(0 | 1)$ (mit waagerechter Tangente) und $W_2(2 | -\frac{1}{3})$.

9 a: Länge der anderen Seite des Rechtecks (in m); b: Länge der Mauer (in m)

Kosten der Begrenzung (in €): K = 2a · 50 + b · 50 + b · 200 = 100a +250 b

Nebenbedingung: Der Flächeninhalt des Rechtecks muss $1000 \,\mathrm{m}^2$ betragen, also $a \cdot b = 1000$ (in m^2),

d.h.
$$b = \frac{1000}{a}$$
.

Zielfunktion (Kosten in €): $K(a) = 100 a + \frac{250000}{a}$; a > 0

$$K'(a) = 100 - \frac{250000}{a^2}; K''(a) = \frac{500000}{a^3} > 0$$

K'(a) = 0 liefert die Minimalstelle a = 50. Damit ist $b = \frac{1000}{50} = 20$ und K(50) = 10000.

Das Gelände sollte 50 m lang und 20 m breit (entlang der Mauer) sein. Die Begrenzung kostet dann 10 000 €.