Berechnungen am Dreieck mit CAS (II)

 ${f 1}$ Zeichne einen Kreis. Lege wie in Fig. 1 einen gleitenden Punkt P auf dem Kreis fest. Von P aus wird das Lot auf den Durchmesser gefällt. Die Länge des Lotes a und der Radius r werden gemessen. α ist der Mittelpunktswinkel.

Das Seitenverhältnis $\frac{a}{r}$ wird mit $\sin(\alpha)$ bezeichnet.

- a) Erzeuge Fig. 1 mit dem CAS.
- b) Bestimme Näherungswerte für $\sin(\alpha)$ und ergänze die Tabelle.

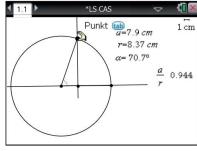


Fig. 1

α	5°	10°	15°	20°	30°	40°	70°	90°
$\sin(\alpha) = \frac{a}{r}$								

2 Verändere die Konstruktion von Aufgabe 1 so, dass zusätzlich der Abstand b vom Lotfußpunkt bis zum Mittelpunkt des Kreises gemessen wird. Bestimme Näherungswerte für $\cos(\alpha)$ als Quotienten $\frac{b}{r}$ und ergänze die Tabelle.

α	5°	10°	15°	20°	30°	40°	70°	90°
$cos(\alpha) = \frac{b}{r}$								

Berechnungen am Dreieck mit CAS (II) - Lösungen

- **1** a) Schrittfolge (Fig. 1):
- 1. Ein Dokument Geometry N öffnen.
- 2. $menu \rightarrow 9$: Kreis

(Zeichnen eines Kreises.)

3. $menu \rightarrow 7$: Punkte & Geraden \rightarrow 4: Gerade

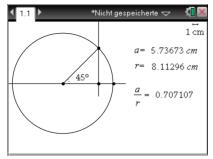
(Zeichnen des Durchmessers als Gerade durch den Kreismittelpunkt.)

4. $menu \rightarrow 7$: Punkte & Geraden \rightarrow 2: Punkt auf

(Punkt P auf dem Kreis festlegen.)

5. $menu \rightarrow A$: Konstruktionen \rightarrow 1: Senkrechte

(Lot von P auf den Durchmesser konstruieren.)


6. $menu \rightarrow 7$: Punkte & Geraden \rightarrow 3: Schnittpunkt(e)

(Markieren des Lotfußpunktes.)

7. $menu \rightarrow 8$: Messung \rightarrow 1: Länge

(Messen der Radius- und Lotlänge.)

- 8. Ctrl menu \rightarrow 5: Text \rightarrow a/r \rightarrow enter
- 9. Ctrl menu \to 4: Berechnen \to a als Länge des Lotes auswählen \to r als Länge des Radius auswählen.

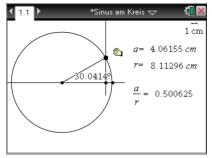


Fig. 2

b) Näherungswerte werden mit der Applikation bestimmt (Fig. 2).

α	5°	10°	15°	20°	30°	40°	70°	90°
$\sin(\alpha) = \frac{a}{r}$	0,087	0,174	0,26	0,343	0,5	0,642	0,939	1,0

- 2 In Ergänzung zur Aufgabe 1 sind folgende Schritte notwendig (Fig. 3):
- 1. $menu \rightarrow 8$: Messung \rightarrow 1: Länge

(Länge b: Kreismittelpunkt - Lotfußpunkt)

- 2. Ctrl menu \rightarrow 5: Text \rightarrow b/r \rightarrow enter
- 3. Ctrl menu \to 4: Berechnen \to b als Länge Kreismittelpunkt-Lotfußpunkt auswählen \to r als Länge des Radius auswählen
- b) Näherungswerte werden mit der Applikation bestimmt

α	5°	10°	15°	20°	30°	40°	70°	90°
$cos(\alpha) = \frac{b}{r}$	0,996	0,985	0,966	0,939	0,866	0,766	0,341	0

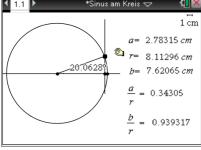


Fig. 3